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1 Approaches to Testing for Cointegration

1.1 Engle-Granger Method

Borrowing notation from Sjö (2011), let xj,t be a series which is stationary after differ-

encing d times and is integrated of order d, expressed as xj,t ∼ I(d). A vector, ~xt =

(x1,t, . . . , xj,t, . . . , xJ,t)
′, has cointegrated components of order d, b, represented as ~xt ∼ CI(d, b),

if ~xt is integrated of order d and there is a nonzero vector where ~β′~xt ∼ I(d−b) with d ≥ b > 0.

The vector, ~β, is the cointegrating vector (Engle and Granger 1987).

To test for cointegration among two variables, we can use a residual based approach like

the Engle and Granger (1987) two-step procedure. To begin, estimate the following equation:

yt = α + βx1,t + εt, (1)

where yt and x1,t are both I(1) and the residuals are ε̂t. In the presence of cointegration, ε̂t

will be I(0). Performing an Augmented Dickey Fuller test on ε̂t gives

∆ε̂t = α + πε̂t−1 +
k∑

i=1

∆ε̂t−i + ζt. (2)

In this framework, we consider the null hypothesis that π = 0 against the alternative hy-



pothesis π < 0. Rejecting the null leads us to conclude the variables are cointegrated and

the cointegration parameter is β. The composition of the variable as the product of multi-

ple stochastic processes not only requires the use of nonstandard critical values (e.g., Engle

and Granger 1987; Banerjee, Dolado, Galbraith, and Hendry 1993) but also leads the test

statistic to change depending on how many variables are in the model.

1.2 The Johansen Approach

Moreover, the Engle and Granger method assumes there is only one cointegrating vector.

The addition of an extra unit root variable, x2,t, makes our regression equation,

yt = α + βx1,t + βx2,t + ηt. (3)

If, as before, yt and x1,t are cointegrating, the resulting linear combination will be stationary.

However, if yt and x1,t are not cointegrating, it is possible that adding x2,t can create a cointe-

grating relationship. As a result, when using the Engle and Granger procedure, a researcher

should throoughly investigate the various combinations of cointegrating hypotheses.

What if we would like to test whether we have integration among more than two variables?

To do so, we can use the VAR representation of a system and apply Johansen’s test (Johansen

1988). Consider the following VAR (adapted from Ericsson and MacKinnon 2002):

~xt =
∑̀
i=1

πi~xt−1 + Φ ~Dt + ~εt, (4)

where ~xt is a vector of k variables at time t; πi is a matrix of coefficients on the ith lag of

~xt, ~εt ∼ IN(0,Ω); ~Dt is a vector including the constant and other deterministic components,

Φ is the matrix of coefficients for ~Dt, and t ranges from 1 to T . ~xt is of order I(d) with

0 ≤ d ≤ 1, requiring dth differencing to make stationary.
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This equation represented in vector error correction form is

∆~xt = π~xt−1 +
`−1∑
i=1

Γi∆~xt−i + Φ ~Dt + ~εt, t = 1, . . . , T (5)

such that

π =

(∑̀
i=1

πi

)
− Ik (6)

and

Γi = −(πi+1 + . . .+ π`), (7)

with It being the identity matrix of dimension k.

Box-Steffensmeier, Freeman, Hitt, and Pevehouse (2014) note the rank of π, r, is the

number of nonzero characteristic roots and can range from 0 to k, the number of equations

in the system. If π is of rank 0, there is no cointegration because all of the variables are unit

roots. No linear combination of them is stationary. If π is of full rank, or r = k, all variables

are stationary. For cointegration to be present, 0 < r < k with r indicating the number of

cointegrating vectors. We can rewrite π as αβ′, making Equation 5,

∆~xt = αβ′~xt−1 +
`−1∑
i=1

Γi∆~xt−i + Φ ~Dt + ~εt. (8)

α is a matrix of adjustment parameters for the cointegrating matrix, β.

Several statistics have been proposed to determine the rank of π including TRACE and

MAX statistics (Johansen 1995; Box-Steffensmeier et al. 2014). The λTRACE statistic is

λTRACE(r) = −T
k∑

i=r+1

ln(1− λ̂i), (9)

and the λMAX statistic is

λMAX(r, r − 1) = −T (ln(1− λ̂r+1)). (10)
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For each equation, λ̂ are eigenvalues, or estimates of characteristic roots, in π. The number

of observations is denoted as T . An eigenvalue is computed for each variable in the system

(λ1 to λk), resulting in k values of each statistic. The λTRACE and λMAX statistics get higher

the larger the value of the characteristic root. That is, the farther the root is away from a

pure unit root, or zero, the greater the value of the TRACE and MAX statistics.

The null hypothesis for λTRACE is that the number of cointegrating vectors is less than

r, while λMAX tests whether the number of cointegrating vectors is equal to r. Used in

combination, the tests can determine the presence of cointegrating vectors. Note that the

tests use nonstandard critical values (Johansen 1995). Box-Steffensmeier et al. (2014, 164)

list several advantages of the Johansen approach such as determining r rather than imposing

a restriction on its value. Also, it does not pose any exogeneity restrictions on the variables.

However, in so doing it requires a thorough specification of the full system. Note also that

the test is sensitive to lag length.

1.3 Returning to the Single Equation Error Correction Model

Most of the work in political science on error correction models (ECMs) focuses not on a

system of equations but on a single equation. If the marginal processes for Equation 8 are

weakly exogenous for β, cointegration can be determined using the single, conditional model

(e.g., Ericsson and MacKinnon 2002).

By way of explanation, let’s briefly return to a system of equations with variables of

interest yt and xt that are both I(1):

∆yt = π(11)yt−1 + π(12)xt−1 + ε1t (11)

∆xt = π(21)yt−1 + π(22)xt−1 + ε2t. (12)
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Recall that we can represent π as αβ′ (see Equation 8), making each equation,

∆yt = α1β
′zt−1 + ε1t (13)

∆xt = α2β
′zt−1 + ε2t. (14)

After partitioning the error term, ε1t = ν1t + γ′0ε2t, Equation 13 can be expressed as,

∆yt = γ′0∆xt + γ1β
′zt−1 + ν1t (15)

∆xt = ε2t. (16)

xt is weakly exogenous if α2 in Equation 14 is equal to zero, and we can assess cointegration

using Equation 15 alone.

There are different ways of assessing the rank of the cointegrating vector. Harbo, Jo-

hansen, Neilsen, and Rahbek (1998) test the null that the rank of the cointegrating vector

is zero. Rejection of the null does not necessarily imply that y and x are cointegrated. In

a model with multiple independent variables – multiple x’s – rejecting the null merely indi-

cates the rank of the cointegrating vector is not zero, indicating the presence of some sort of

cointegration; it does not indicate whether it includes y or is present only among the x’s.

We can also test for cointegration in the single-equation framework motivated by con-

sideration of the re-parameterized autoregressive distributed lag model: the GECM (e.g.,

Hendry 1984; Banerjee, Dolado, and Mestre 1998). Consider the following model:

∆yt = α0 + α∗1yt−1 + β0∆xt + β1xt−1 + εt. (17)

Cointegration can be assessed by testing the significance of α∗1 on the lagged dependent

variable. The null hypothesis is that y and x are not cointegrated. This is a special case of

the Johansen procedure described above where the cointegrating vectors appear only in the

equation of interest rather than also appearing in the other equations in the system.
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Just as with the Engle-Granger and Johansen approaches, there are several assumptions

worth highlighting here. First, weak exogeneity is assumed. If weak exogeneity does not

hold, the critical values to determine the significance of α∗1 are affected (Hendry 1995). The

conditional ECM also usually imposes r ≤ 1 (Ericsson and MacKinnon 2002).

2 Examining α∗1 across Simulation Scenarios

Figure 1 displays average α∗1 values for the simulation scenario described in the paper. Ad-

ditional x’s move α∗1 further from zero which might lead a researcher to erroneously describe

a faster error correction rate.
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Figure 1: The consequences of GECMs with unbalanced equations. Adding unrelated I(1)
regressors moves α∗1 further from zero.
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3 Replicating Simulation Results with Alternative DGP

In order to check the robustness of the Monte Carlo analysis, we repeat the simulation with an

alternative DGP. More specifically, we directly simulate a GECM process with cointegration

between y and x1 while all the remaining x’s are independent unit roots. As before, we start

by simulating 1000 datasets each containing 9 independent unit root variables (k = 9) with

T ∈ {50, 100, 200}:

xj,t = xj,t−1 + εj,t, εj,t ∼ N(0, 1), j = 1, . . . , k; t = 1, . . . , T. (18)

Then, we draw an initial yt=1 ∼ N(0, 1) and simulate all subsequent yt’s according to the

following process:

yt = yt−1 + ∆yt, (19)

∆yt = 1− 0.4yt−1 + 0.5∆x1,t + 0.5x1,t−1 + ζt, ζt ∼ N(0, 1) (20)

This DGP results in a cointegrating relationship between y and x1 while the remaining

independent variables (x2, . . . , x9) are each unrelated unit roots. Compared to the simple

DGP in the main text, we observe similar patterns regarding the significance of α∗1 as well

as the false positive rates on the unrelated LRMs (see Figure 2 and 3).
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Figure 2: The consequences of GECMs with unbalanced equations (alternative DGP).
Adding unrelated I(1) regressors does not sufficiently diminish the statistical significance
of α∗1.
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Figure 3: The consequences of GECMs with unbalanced equations (alternative DGP). We
observe inflated false positives on long run multipliers for unrelated regressors. The horizon-
tal line indicates an acceptable significance rate of 0.05.
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4 Violating the Exogeneity Assumption

We can additionally explore how violations of the exogeneity assumption for unrelated re-

gressors affects false positive rates. We repeat the same DGP as above (based on the GECM

with the same parameters) and induce endogeneity by letting x̃j∀j 6= 1 be correlated with

the GECM error term ζt:

x̃j,t = xj,t + ζt + ηj,t, ηj,t ∼ N(0, 1), j = 2, . . . , k (21)

Again, we simulated a cointegrating relationship between y and x1. The remaining in-

dependent variables (x2, . . . , x9) are still unit roots, but they are now correlated with the

GECM error term. The results for this DGP are displayed in Figure 4 and 5. Adding

endogenous regressors that are not cointegrated with y reduces the proportion of times α∗1

surpasses MacKinnon’s critical values. However, violating the exogeneity assumption sub-

stantially increases false positive rates on unrelated LRMs.
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Figure 4: The consequences of GECMs with unbalanced equations (violating exogeneity).
Adding unrelated I(1) regressors does not sufficiently diminish the statistical significance of
α∗1.
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Figure 5: The consequences of GECMs with unbalanced equations (violating exogeneity).
We observe inflated false positives on long run multipliers for unrelated regressors. The
horizontal line indicates an acceptable significance rate of 0.05.
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5 Alternative specification for Volscho and Kelly (2012)

Table 1: Alternative specification for Volscho and Kelly (2012)

(1)
∆ Top 1%t

Top 1%t-1 -0.759∗∗∗

(0.123)
% Cong Demst-1 -0.0500∗∗

(0.0162)
% Divided Govtt-1 -0.308

(0.177)
% Union Membershipt-1 -0.362∗∗∗

(0.0825)
% Top Marginal Taxt-1 -0.0273∗

(0.0110)
Capital Gains Tax Ratet-1 -0.0720∗∗∗

(0.0176)
∆ Unemplymentt -0.0703

(0.121)
Unemplymentt-1 -0.140

(0.118)
Trade Opennesst 0.151

(0.104)
Log RGDPt-1 -5.930∗∗∗

(1.315)
∆ Real S&P 500 Indext 0.0635∗∗∗

(0.00755)
Real S&P 500 Indext-1 0.0352∗∗∗

(0.00705)
Shiller HPIt-1 0.350∗∗∗

(0.0820)
Constant 69.56∗∗∗

(14.06)
N 60
R2 0.811
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