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Abstract

Grant and Lebo (2016) and Keele, Linn, and Webb (2016) clarify the conditions
under which the popular general error correction model (GECM) can be used and
interpreted easily: In a bivariate GECM the data must be integrated in order to rely
on the error correction coefficient, α∗1, to test cointegration and measure the rate of
error correction between a single exogenous x and a dependent variable, y. Here we
demonstrate that even if the data are all integrated, the test on α∗1 is misunderstood
when there is more than a single independent variable. The null hypothesis is that
there is no cointegration between y and any x but the correct alternative hypothesis
is that y is cointegrated with at least one—but not necessarily more than one—of the
x’s. A significant α∗1 can occur when some I(1) regressors are not cointegrated and the
equation is not balanced. Thus, the correct limiting distributions of the right-hand-side
long-run coefficients may be unknown. We use simulations to demonstrate the problem
and then discuss implications for applied examples.



1 Introduction

A recent Political Analysis symposium investigated applications of the popular general error

correction method (GECM). Grant and Lebo (2016) focus on common mistakes made with

the GECM, particularly with interpreting the error correction parameter. A response by

Keele, Linn, and Webb (2016) clarifies the meaning of often misunderstood parts of DeBoef

and Keele (2008). The symposium sparked interest in both the usage of the method and

the question of equation balance (e.g. Enns and Wlezien 2017; Lebo and Kraft 2017; Pickup

and Kellstedt 2018). Here, we demonstrate interpretation problems when using multiple

exogenous variables, even when all are unit roots. In particular, we outline the correct

interpretation of the hypothesis test on the error correction coefficient, α∗1. Rejecting the null

does not indicate that all of the variables are cointegrated. Further, α∗1 cannot assess which

x’s are cointegrated with y, whether the equation is balanced, or what the correct critical

values are for other coefficients. We highlight the implications for applied research with

examples of Kelly and Enns’s (2010) and Volscho and Kelly’s (2012) tests for cointegration.

2 Cointegration, the GECM, and Equation Balance

A simplified expression of an individual time series, yt, is:

yt = Dt + ρyt−1 + µt (1)

in which the deterministic features – a constant or trend – are captured by Dt and µt is a

white noise process. When ρ = 1, the series has a unit root (non-stationary, integrated, or

I(1)) and meanders without tending towards a long-term mean. A series with ρ < 1 will

have mean reversion and is classified as stationary, non-integrated, or I(0). A unit root series

can be rendered stationary through the process of differencing – creating a new series from

the changes between time-points, i.e. ∆yt = yt − yt−1.
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Cointegration exists when a linear combination of two or more unit-root series are jointly

stationary. Cointegrated series are in a long-run equlibrium such that any movement away

from each other is short-lived. Engle and Granger (1987) provide a two-step framework for

understanding and testing for cointegration that begins with:

yt = α + βxt + εt, (2)

where yt and xt are both I(1) and the residuals are ε̂t.
1 Testing ε̂t’s stationarity is a coin-

tegration test. If ε̂t is stationary, ε̂t−1 can be used in a second regression to measure error

correction – the rate at which equlibirium returns after a shock in ε separates yt and xt:

∆yt = α0 + α1ε̂t−1 + ∆β1xt + ζt. (3)

The Engle–Granger method was once a popular approach in political science (e.g. Ostrom Jr.

and Smith 1993; Clarke and Stewart 1995; Calderia and Zorn 1998). However, the simpler

single-equation GECM became the go-to method following publicaton of DeBoef and Keele

(2008). The B̊ardsen (1989) expression of a bivariate GECM is particularly popular:

∆yt = α0 + α∗1yt−1 + β∗0∆xt + β∗1xt−1 + ηt (4)

where ∆yt is the differenced version of the dependent variable, α0 is a constant, α∗1 is the

error correction coefficient, β∗0 is the short-term effect of ∆xt, β
∗
1 is used to calculate the

long-run effect (referred to as the long-run multiplier, LRM) of exogenous variable xt as
β∗
1

−α∗
1
,

and ηt is a well-behaved error term. With integrated data and a single x, α∗1 tests a null of

no cointegration against an alternative hypothesis that yt and xt are cointegrated. The test

relies on non-standard “MacKinnon values” (Ericsson and MacKinnon 2002).

Equation balance is a key factor when evaluating Equation 4. The order of integration

1We limit the deterministic features to a constant for simplicity. See Appendix for more detail.
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of variables on the right-hand-side, either separately or in combination, must be the same

as that of the dependent variable (Banerjee et al. 1993; Lebo and Grant 2016). A lack of

balance “tells you that your model is either wrong or incomplete in a way that will prevent a

meaningful interpretation of the model” (Pickup and Kellstedt 2018, p. 6). With cointegra-

tion, yt−1 and xt−1 are jointly stationary and – since ∆yt and ∆xt are each stationary – the

equation is balanced. As such, each regressor can rely on a standard limiting distribution.

However, if there is an integrated regressor that is not cointegrated with other variables in

the equation, its coefficient cannot do so (Sims, Stock, and Watson 1990).2 Thus, a standard

t-test is appropriate for a regressor’s coefficient in a single equation autoregressive distributed

lag model (ADL)3 or GECM in the following (non-exhaustive) list of scenarios:

• A differenced xt, whether xt is integrated or not, though not if xt is I(2) or higher.

• An integrated xt in level form that is cointegrated with yt.

• An integrated xt alongside xt−1 (or other lags) making them jointly stationary.

• An integrated x1t that is cointegrated with an integrated x2t.

• An xt that is stationary with little autocorrelation.

Without cointegration, Equation 4 is unbalanced since it would regress a stationary ∆y

on an xt−1 that is non-stationary, on its own or in combination. Then, β∗1 requires a non-

standard distribution. In such cases, it is unclear what a long-term relationship between

an I(0) y and I(1) x, or vice versa, would mean (Pickup and Kellstedt 2018). In sum, for

a bivariate GECM with all I(1) data, α∗1 is a test of cointegration which must be present

for balance and for the β’s to all follow a t-distribution. Next, we show the alternative

hypothesis for α∗1 is not straightforward with multiple independent variables.

2Banerjee et. al (1993, p. 167) add: “This implies some advantage to the use of dynamic rather than static
regressions, since lagging variables and including them as regressors often has the same effect as providing a
co-integrated set of regressor variables.”

3The bivariate ADL is: yt = α + α1yt−1 + β1xt + β2xt−1 + εt. It is mathematically equivalent to the
GECM but the parameters must be interpreted differently.
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3 Testing α∗
1 with Multiple Independent Variables

To review, in a bivariate GECM α∗1 is a cointegration test only if both y and x are I(1).

Interpretation becomes difficult without I(1) data – estimates of α∗1 can depend on many

factors besides the effects of independent variable. Any uncertainty in diagnosing the data

creates uncertainty in what α∗1 is testing.

However, even if all the data are undisputedly I(1) and even if one uses MacKinnon

values, with more than a single independent variable, a significant α∗1 does not necessarily

indicate that all the variables are cointegrated nor does it mean the equation is balanced.

With multiple x’s, the null hypothesis on α∗1 is still that there is no cointegration but the

alternative hypothesis is that cointegration exists between at least one x and y (Harbo et al.

1998). It is not that all of the x’s are cointegrated with y.

In the general case, we represent a potential cointegrating relationships between a set of

variables in a vector error correction model (VECM, see Ericsson and MacKinnon 2002) as:

∆~zt = π~zt−1 + Γ∆~zt + Φ ~Dt + ~εt, t = 1, . . . , T (5)

where ~zt = (yt, x1t, ..., xk−1t)
′ is a vector of k variables at time t, some of which may be

cointegrated; ~Dt is a vector of d deterministic variables such as a constant term and a trend;

and ~εt is a vector of k unobserved jointly normal and sequentially independent errors.4 For

parameters, π is a k×k matrix of coefficients on the lag of ~zt, Γ is a k×k matrix of coefficients

on the difference of ~zt,
5 and Φ is a k × d matrix of constant and trend coefficients.

The number of cointegrating vectors r is equal to the rank of π where 0 ≤ r ≤ k. Also,

π may be rewritten as αβ′, where β is a k× r matrix of cointegrating vectors that is of full

rank, and α is a k× r matrix of adjustment coefficients. Within this framework, Johansen’s

(1988; 1995) procedure determines the number of cointegrating vectors in Equation 5 based

4For simplicity, we assumed that the maximum lag of the VECM is equal to one. See: Ericsson and
MacKinnon (2002) for a more general treatment.

5Note that in this specification of the VECM, diag(Γ) = 0
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on the rank of π. The key insight is that while a cointegrating vector may contain all the

variables in a system, this is not guaranteed. Instead, it may be composed only of a subset

of the variables and may have elements equal to zero. In fact, the possibility of multiple

cointegrating vectors in the system implies that not all of them contain every single variable.6

As Banerjee et al. (1993, 145) notes: “If xt has n > 2 components, then there may be more

than one co-integrating vector α; it is possible for several equilibrium relationships to govern

the joint evolution of the variables.” Even if there is only a single cointegration vector (i.e.,

r = 1), Johansen (1988, p. 236) says “it seems natural to test that certain variables do not

enter into the cointegration vector.” Political scientists generally, but incorrectly, do not

focus on the cointegrating vector(s). In their 1993 Econometrica article, Stock and Watson

(1993) compare eight estimators of the cointegrating vector that allow researchers to test

where cointegration is and where it is not. Assuming the independent variables are weakly

exogenous and causally prior, the ECM and ADL approaches are appropriate for inference

about cointegrating vector(s). Otherwise, researchers may rely on the Engle-Granger or

Johnansen approaches. Enders (2015, pp. 395-6) offers a more accessible explanation in a

section called Inference with Cointegrating Vectors.

Applied research usually assumes weakly exogenous regressors and focuses on a single-

equation GECM (i.e., only examining yt as a dependent variable rather than the entire

system ~zt). With multiple regressors, this is:

∆yt = α0 + α∗1yt−1 +
k∑
j=1

(
β∗0j∆xj,t + β∗1jxj,t−1

)
+ εt, (6)

In Equation 6, the null for α∗1 = 0 is no cointegrating vector between y and any of the x’s.

Having α∗1 < 0 indicates there is cointegration involving y, but, crucially, the cointegrating

vector may still contain elements equal to zero. Just as cointegrating relationships in a VAR

may not include all the variables in the system, in a single equation model there may be

6The Trace and Max statistics are useful for assessing cointegrating vectors. See our Appendix for
descriptions of these tests and Box-Steffensmeier et al. (2014, p.165) for more detail.
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cointegration betweeen y and an incomplete subset of the remaining x’s. A significant α∗1

can occur in an unbalanced equation and is not evidence that all the variables are part of

a cointegrating system. Some x’s may be jointly stationary and some may not be. Thus,

correct interpretation of the β∗1 coefficients is not possible without further testing.

∆yt = α0 + α∗1yt−1 + β∗01∆x1,t + β∗11x1,t−1 + β∗02∆x2,t + β∗12x2,t−1 + εt (7)

To illustrate, consider Equation 7 when data are all I(1), y is cointegrated with x1, and

x2 is unrelated to both x1 and y. The terms yt−1 and x1t−1 would be jointly stationary and

likely produce a significant α∗1. However, with x2t−1 included, the equation is unbalanced.

Incorrect practice would use α∗1 to infer that a) y, x1, and x2 are all part of a cointegrating

system, b) the equation is balanced, and c) an asymptotically normal test-statistic applies

to β∗11 and β∗12. Since x2 is an integrated regressor, its coefficient cannot rely on the standard

normal distribution. In fact, we cannot know which β∗1j’s rely on a t-distribution and which

do not unless we know which x is cointegrated. Without knowing the correct critical values,

we do not know whether or not to reject the null.

4 Monte Carlo Analysis

Among the many applications of error correction models in political science, some use a large

number of independent variables and some use very few time points.7 We simulate various

scenarios containing between 1 and 9 independent variables and sample sizes of 50, 100, and

200. Each regressor is simulated according to the following unit-root process:

xj,t = xj,t−1 + εj,t, εj,t ∼ N(0, 1), j = 1, . . . , k; t = 1, . . . , T. (8)

7For example, Volscho and Kelly (2012) use around 10 independent variables (depending on the model
specification) and Ura and Wohlfarth (2010) have T = 29.
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Then, we generate yt such that:

ζt = 0.6 ∗ ζt−1 + ηt, ηt ∼ N(0, 1) (9)

yt = x1,t + ζt (10)

This DGP creates a cointegrating relationship between y and x1, since both are I(1) and

their difference is AR(1) with γ = 0.6.8 The remaining independent variables x2, . . . , x9 are

each I(1) but unrelated to other variables. For each scenario, we generate 1000 simulated

datasets and estimate GECMs of the form:

∆yt = α0 + α∗1yt−1 +
k∑
j=1

(
β∗0j∆xj,t + β∗1jxj,t−1

)
+ εt, (11)

with k varying from 1 through 9. Starting with a balanced GECM where the only indepen-

dent variable is x1, we incrementally add unrelated I(1) regressors until we have included

all of x1 through x9. Moving from left to right within each panel of Figure 1 shows the pro-

portion of times α∗1 surpasses MacKinnon’s critical values (p < .05) as unrelated regressors

are added alongside the cointegrated x1.

In practice, it is clear that α∗1 tests whether cointegration is present, not whether all

the variables are jointly cointegrated. For example, with eight unrelated I(1) regressors,

α∗1 identifies that cointegration is present in 100% and 82% of simulations for T = 200 and

T = 100, respectively.9 Additional unrelated I(1) regressors modestly reduce the frequency

with which α∗1 reaches significance in shorter time series but, usually, α∗1 does not alert the

researcher that any particular x is not part of the equilibrium relationship with y. If a

significant α∗1 indicated that all of the variables are a part of a cointegrating system, it

would have to cease being significant once the model contained an unrelated I(1) regressor.

8When estimating a bivariate GECM, this results in a cointegrating relationship with α∗
1 ≈ −0.4. Alter-

natively, we also simulated a DGP that directly implements the GECM specified in Equation (1) for y and
x1. For example, setting α0 = 1, α∗

1 = −0.4, β∗
0 = 0.5, and β∗

1 = 0.5 yields results that are almost identical
to the ones discussed below. For further details see online appendix.

9These problems are exacerbated if the assumption of weak exogeneity does not hold. See Appendix.
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Figure 1: The consequences of GECMs with unbalanced equations. Adding unrelated I(1)
regressors does not sufficiently diminish the statistical significance of α∗1.

Problems extend to long-run multipliers, calculated as
β∗
1j

−α∗
1
. Conditional on α∗1 surpassing

MacKinnon critical values, Figure 2 displays the average proportion of times each LRM

for the unrelated independent variables x2 through x9 are significantly different from zero.

Rejecting the null conditional on α∗1, we observe inflated false positive rates on all unrelated

x’s that are included in the model. Instead of an appropriate rejection rate of 5% (horizontal

reference), unrelated regressors are statistically significant far too often. Additional x’s also

move α∗1 further from 0 which might lead a researcher to erroneously describe a faster error

correction rate.10

Using the incorrect alternative hypothesis for α∗1 with multiple I(1) x’s and rejecting the

null without further investigation means interpreting β’s without knowing where one might

be breaking the standard of zero-mean non-integrated regressors needed for trustworthy

tests using a standard t-distribution. Before being able to consider the results of a GECM

for substantive interpretation, applied researchers must make sure that the only I(1) x’s

included in the model are those that are indeed part of the cointegrating system. Again,

Stock and Watson (1993) compare eight procedures to examine the cointegrating vector(s).

10See online appendix for additional results.
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Figure 2: The consequences of GECMs with unbalanced equations. We observe inflated false
positives on long run multipliers for unrelated regressors. The horizontal line indicates an
acceptable significance rate of 0.05.

Researchers need to be familiar with and apply some of these tests when attempting to

make inferences with more than a single exogenous variable. The following section discusses

examples where this practice has not been followed.

5 Examples: Kelly and Enns (2010) and Volscho and Kelly (2012)

Many GECM analyses in political science rely on α∗1 to judge cointegration and error cor-

rection between multiple variables simultaneously. For example, Enns et al. (2016, 4) apply

MacKinnon values to data from Kelly and Enns (2010) and claim to “find clear evidence

of cointegration” between Liberal Policy Mood and various sets of independent variables in

their GECMs.

Even assuming the data are I(1), Enns et al. (2016) use a significant α∗1 to conclude

that all of the series are cointegrated. Relying on only α∗1, it is unknown if the equation

is balanced. For example, Kelly and Enns’s (2010) Model 2 in Table 1 reports coefficients

for policy liberalism and income inequality which may or may not be significant; the correct
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limiting distributions cannot be known without more testing.11

Volscho and Kelly (2012) estimate the determinants of Income for the Top 1% using:12

∆Top1%t = α0 + α∗1Top1%t−1 + β∗1(CD)%CongDemst−1 + β∗1(DG)%DividedGovtt−1

+β∗1(UM)%UnionMembershipt−1 + β∗1(TMT )%TopMarginalTaxt−1

+β∗0(CGT )∆CapitalGainsTaxRatet + β∗1(CGT )CapitalGainsTaxRatet−1

+β∗1(3MTB)3MonthTBillt−1 + β∗0(TO)∆TradeOpennesst + β∗1(LogRGDP )LogRGDPt−1

β∗0(RealS&P )∆RealS&P500Indext + β∗1(RealS&P )RealS&P500Indext−1

+β∗1(SHPI)ShillerHPIt−1 + εt

(12)

Without multiple lags of the x’s, the integrated right-hand-side variables must all be mutually

cointegrated for equation balance to hold and for the β1’s to rely on the t-distribution. How

should we test cointegration here? Volscho and Kelly (2012) use a significant α∗1 as evidence

that all I(1) regressors are cointegrated.

Enns and Wlezien (2017) claim that Volscho and Kelly’s equation is balanced so that

β∗1(UM), β
∗
1(TMT ), β

∗
1(CGT ), β

∗
1(3MTB), β

∗
1(LogRGDP ), and β∗1(RealS&P ) can be evaluated using a

standard normal distribution. The reasoning seems to be that, since a significant α∗1 indicates

all the unit root x’s are in a cointegrating system, and since stationary variables also rely on

a t-test, everything on the right-hand-side of the equation must be stationary and can rely

on a t-test. This rationale makes stationarity concerns inconsequential and is a step away

from calls for more careful analyses.

What if, like our simulations, Top1%Share is in fact cointegrated with some but not all

of the I(1) x’s? If so, some β’s are trustworthy and others are not. How can we tell which is

which? To experiment, we swapped out ∆CapitalGainsTaxRatet and 3MonthTBillt−1 in

favor of ∆Unemploymentt and Unemploymentt−1. Volscho and Kelly (2012) acknowledge

11See Lebo and Kraft (2017) for further examination of issues with Kelly and Enns (2010).
12Beyond adding independent variables, Equation 12 is not a straightforward expansion of a GECM as

several components such as ∆%CongDemst have been left out.

10



the latter two are not predictors of Top1%Share and omit them from their preferred model.

The new model’s results do not alert us that the cointegrating system has an intruder.

In fact, α∗1 moves farther from 0, from -0.648 to -0.759, remains significant, and surpasses

the MacKinnon critical value.13 A better approach within the GECM framework would do

subsequent testing to piece together where cointegration is and where it is not. We conclude

with a brief overview of best practices.

6 Discussion

In a single equation model with I(1) data, a significant α∗1 indicates that at least one re-

gressor is cointegrated with the dependent variable. It does not test whether multiple x’s

are all cointegrated with the dependent variable. Without understanding the alternative

hypothesis, we can mistakenly think an equation is balanced and perhaps use the wrong

limiting distribution and critical value to incorrectly reject a true null hypothesis. Many

extant studies in political science run afoul of what we now know to be good practice. As

Banerjee et al. (1993, p.192) point out, “The moral of the econometricians’ story is the need

to keep track of the orders of integration on both sides of the regression equation.” In light of

our findings in this paper, we recommend prior studies be read cautiously and reexamined.

How can practitioners make reliable inferences using the GECM? First, be less ambitious

with short data sets. Keele, Linn, and Webb (2016) suggest one regressor for every 10 obser-

vations as a rule of thumb. Second, demonstrate robustness by trying models with different

assumptions regarding the underlying univariate processes. Third, if one assumes that y

and multiple x’s are I(1), take great care to properly identify the cointegrating system. One

possibility is to apply the Engle-Granger (1987) two-step cointegration process iteratively

by adding individual regressors in order to sort which variables are cointegrated and which

are not. Alternatively, Johansen’s (1988; 1995) procedure allows for direct inference on the

cointegrating vector to identify variables included in the equilibrium relationship.14 Also,

13See online appendix for additional results.
14See Enders (2015); Box-Steffensmeier et al. (2014) as well as the online appendix for more information.
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Stock and Watson (1993) estimate the cointegrating vector using dynamic OLS and parse

out which variables are cointegrated. Ultimately, researchers must include I(1) x’s as regres-

sors only when they are part of the cointegrating system or otherwise mutually stationary

with another regressor.

Fourth, when using the GECM, rely on long-run multipliers instead of α∗1 (Banerjee

et al. 1993, Chapter 2; DeBoef and Keele 2008). Finally, consider new methods that forego

the knife-edged classification decision between I(0) and I(1) (e.g. Lebo and Young (2009);

Lebo and Norpoth (2011)) or that entirely avoid univariate identification such as the bounds

procedure introduced by Webb, Linn, and Lebo (2019, 2020).

Overall, researchers should be careful when positing about more than two variables as

being part of a cointegrating “system” (e.g., Ramirez 2009; Ura and Wohlfarth 2010; Ura

2014; Enns 2014). Rather than quickly interpreting one parameter of a fully specified GECM

as evidence for joint cointegration of all I(1) regressors, it is helpful to examine cointegrat-

ing vectors one independent variable at a time. Equation balance is a useful concept for

understanding when hypothesis tests follow standard limiting distributions but exclusively

relying on a single parameter in the GECM is insufficient to assess balance and make credible

inferences.
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