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Abstract

ArfimaMLM provides functions to facilitate the estimation of Arfima-MLM for repeated cross-
sectional data and pooled cross-sectional time series data. The estimation procedure uses double
filtering with Arfima methods to account for autocorrelation in longer RCS followed by the use
of multilevel modeling (MLM) to estimate both aggregate- and individual-level parameters simul-
taneously. This documentation provides a brief description of the general approach, as well as
an introduction of possible model specifications. The main function of the package is arfimaMLM,
which implements Arfima and multilevel models on a repeated cross-sectional dataset as described
by Lebo and Weber (2015). Furthermore, the function arfimaOLS uses the same initial proce-
dures but estimates a simple linear model instead of the multilevel model. The package also
includes arfimaPrep, which prepares a dataset for subsequent analyses according to the Arfima-
MLM framework without estimating the final model itself. fd is a wrapper function to estimate
the fractional differencing parameter using hurstSpec of the fractal-package as well as proce-
dures provided by the fracdiff-package (via ML, GPH, and Sperio) and to differentiate the series
accordingly (mainly for internal use in arfimaMLM,arfimaOLS, and arfimaPrep).

Related Commands: arfimaMLM, arfimaOLS, arfimaPrep
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1 Introduction

Lebo and Weber (2015) presented Arfima-MLM as a new framework for the analysis of
repeated cross-sectional (RCS) data. The authors argued that previous methods either fail
to account for possible autocorrelation in datasets with many time points, or do not allow
for the simultaneous estimation of aggregate- and individual-level parameters. The method
suggested by Lebo and Weber (2015) employs double filtering with Arfima methods to remove
temporally deterministic components from the variables of interest. After purging potential
autocorrelations, a multilevel model (MLM) is used to estimate the parameters for both, the
individual as well as the (aggregate) temporal level variables.

The paper presented here describes the ArfimaMLM-package for the statistical software R,
which allows for an easy implementation of the procedures described by Lebo and Weber
(2015). The paper proceeds as follows: the first section will briefly summarize the statis-
tical approach presented by Lebo and Weber (2015). The following section introduces the
ArfimaMLM-package, describes the necessary steps for installation, and provides an overview
over the general usage of the package. Subsequently, the package will be applied to a simu-
lated dataset.

2 Arfima-MLM - Overview

Statistical analyses in political science are often based on data following a repeated cross-
sectional designs. Common examples can be found in survey research, such as the National
Annenberg Election Study, the American National Election Studies, or Gallup polls, or
other types of data such as congressional roll-calls and Supreme Court cases (see Lebo
and Weber 2015). Overall, repeated cross-sectional data structures can be characterized
by the fact that individual observations are nested within time. However, in contrast to
a panel structure, each unit is only included in the dataset at a single point in time. As
Lebo and Weber (2015) point out, previous analyses that did not rely on multilevel models
usually focused on either the aggregate- or the individual level when analyzing repeated
cross-sectional data, which can lead to incorrect standard errors (in the case of pooling) or a
significant information loss (in the case of aggregating over time points). Multilevel modeling
overcomes this dichotomy between individual and aggregate perspectives since it allows for
the estimation of parameters on both levels. However, a simple multilevel model that does
not take into account potential deterministic components on the aggregate level might still
yield biased or inconsistent results.

The estimation procedure suggested by Lebo and Weber (2015) combines established
approaches used to analyze long time series and multilevel modeling in order to account for
potential autocorrelations on the aggregate level.

The first step of the Arfima-MLM approach consists of the estimation of fractional differ-
encing parameters for the aggregate-level variables considered in the analyses and differencing
the respective series accordingly (see also Box-Steffensmeier and Smith 1996), such that

Ȳ ∗
t = (1 − L)dȲt, (1)

where Ȳ ∗
t is the stationary series free of autocorrelation, L is a lag operator, d is the frac-

tional differencing parameter, and Ȳt is the original series of level means of Y at time t.
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Furthermore, the procedure described by Lebo and Weber (2015) includes the estimation of
AR and MA parameters as part of the Arfima (p,d,q) model. The fractional differencing and
modeling of AR and MA parameters described above is employed for the dependent variable
as well as all remaining independent aggregate-level variables included in the analyses (see
Lebo and Weber 2015 for a more detailed discussion of the approach).

In the following step, the individual-level variables are purged from serial correlation
on the aggregate level. For the dependent variable, this is done by subtracting the daily
deterministic component (Ȳt − Ȳ ∗

t ) from the individual-level values:

y∗∗it = yit − (Ȳt − Ȳ ∗
t ), (2)

where y∗∗it consists of the within-time point, as well as the white-noise between-time point
variation.

In order to remove potential autocorrelation from independent (individual-level) vari-
ables, the within-time point variation is calculated by subtracting the respective level means
at time t,

x∗∗it = xit − X̄t, (3)

where x∗∗it is the within-time point variation of xit, xit is the original individual-level variable,
and X̄t is the variable’s level mean at time t.

After applying this double-filtering procedure to the variables of interest, the multilevel
model can be specified. Consider an example with a dependent variable yit, an independent
variable xit (both of which are filtered according to the procedure outlined above), as well as
a aggregate-level variable Z (which does not vary within time-points). The respective model
can be described as follows (Lebo and Weber, 2015):

y∗∗it = α1t + β1x
∗∗
it + ε1it (4)

α1t = α2t + β2X̄
∗
t + γZ∗

t + ε2t, (5)

where y∗∗it are the double filtered values for yit, x
∗∗
it are the within-time point variations of

xit, X̄
∗
t is the fractionally differenced series of X̄t, and Z∗

t is the fractionally differenced series
of Zt. As described by Lebo and Weber (2015), equation (4) can be further expanded to
incorporate time-varying coefficients at the individual level, e.g. by letting the coefficient for
x∗∗it vary across time points:

y∗∗it = α1t + βtx
∗∗
it + ε1it (6)

The following section describes the ArfimaMLM-package which facilitates the estimation based
on the procedure outlined above.

3 Installing the Package

ArfimaMLM is available on CRAN and can be installed by executing the following command
in R:

install.packages("ArfimaMLM")
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Alternatively, the latest (development) version of ArfimaMLM can be installed directly from
GitHub (using the devtools-Package):

library(devtools)

install_github("pwkraft/ArfimaMLM")

Now the package is installed to the library. In every new session, the package can now be
loaded by executing

library(ArfimaMLM)

At the current version (1.3), the package consists of three major functions: arfimaMLM,
arfimaOLS, and arfimaPrep, as well as fd, which is mainly for internal use within the remain-
ing functions.1 arfimaMLM employs the data manipulations and analyses for a given repeated
cross-sectional dataset as specified above. ArfimaOLS performs the same data manipulations
but ultimately estimates a linear model instead of a multilevel model. arfimaPrep allows
the user to manipulate the data according to the framework specified above, but without
estimating a final model. fd is a wrapper function for the fracdiff-package for internal use
within arfimaPrep. The following section will provide an introduction for the usage of the
arfimaMLM command on the basis of a simulated dataset.

4 Using the arfimaMLM-command - A Brief Example

4.1 Simulating a Repeated Cross-Sectional Dataset

In order to demonstrate the usage of the arfimaMLM command, we constructed a simulational
scenario of a repeated cross-sectional dataset with 100 time points and 500 units within each
time point. The dataset contains four different independent variables: x1, x2, z1, and Z2.
x1 is normally distributed with mean X̄1t and a standard deviation of 2. Across time points
t, X̄1t follows a fractionally integrated series with d = 0.3 and a mean of 5. x2 is normally
distributed with a mean of 0 and a standard deviation of 40. The mean of x2 is constant
across all time points. z1 is constructed similar to x1: the variable is normally distributed
with a mean of Z̄1t and a standard deviation of 3. Z̄1t follows a fractionally integrated series
with d = 0.1 and a mean of 2. Z2t follows a fractionally integrated series with d = 0.25 and
a mean of 3. Z2t does not differ within time points. The dependent variable y is constructed
as follows:

y = Ȳt + β1t ∗ x1 − 0.05 ∗ x2 + 0.3 ∗ Z̄1t + 0 ∗ Z2t + ε , where

β1t ∼ N(0.2, σ2 = 0.1)

ε ∼ N(0, σ2 = 1), (7)

where Ȳt follows a fractionally integrated series with d = 0.4 and a mean of 10. Note that
β1t is a random coefficient that varies between time points and that the level variable Z2t

1 For details, execute ?arfimaMLM, ?arfimaOLS, ?arfimaPrep, or ?fd in R, or refer to the package manual.
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actually has no effect on y. In the dataset, we observe the the following variables: y, x1,
x2, and z1 for each individual i, as well as Z2t for each time point t. It is worth noting that
in this scenario, it is the aggregate level at time t of z1 that affects y, while we measure
the variable on an individual level. This aspect was included to demonstrate the possibility
of testing aggregate level hypotheses based on individual level data within the arfimaMLM

package without prior data manipulations.
The following figures provide an overview over the data simulated for further analyses.

Figure 1 displays the individual level data points for y as well as the underlying fractionally
integrated mean Ȳt.

Fig. 1: Plot of Dependent Variable y Across Time

Unsurprisingly, it can be observed that the fractionally integrated structure of the level
means manifests itself in the central tendencies of the individual variable values at time t.
Figure 2 displays the same plots for the four independent variables.

Both individual level variables that were specified to follow an underlying fractionally
integrated mean (x1 and z1) show the same pattern as the dependent variable y. As specified
in the model, the mean of x2 does not vary across time points. For Z2, no individual level
variables are observed, so the plot only displays the respective level means at time t.

After presenting the simulational scenario, we will now turn to the discussion of the model
estimation.
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Fig. 2: Plot of Independent Variables Across Time

4.2 Model Estimation

As already outlined above, the dataset only contains the following variables x1, x2, z1, Z2

and y. Calling the head of the data frame in R yields the following output:

head(data)

time x1 x2 z1 z2 y

1 1 4.0377894 -32.12057 6.4554502 2.222936 12.250030

2 1 1.8475985 -98.35277 6.5237611 2.222936 15.278788

3 1 2.9154049 33.02954 -1.7316546 2.222936 8.544409

4 1 4.1272183 95.09765 2.3748715 2.222936 6.813665

5 1 5.5262933 -18.80429 6.1095797 2.222936 11.634492

6 1 0.8838083 -10.80839 0.7090984 2.222936 10.483916

It is worth noting again that x1, x2, and y are only included as individual-level variables.
z1 is also included as an individual-level variable but we are ultimately interested in the
estimation of the level effect of Z̄t. Z2 on the other hand does not vary between time points.
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In order to be able to compare the model estimates of arfimaMLM to other model speci-
fication, we will first present the results of a simple linear regression, as well as a multi-level
model (including random effects for x1) based on the simulated data. The results are pre-
sented in Table 1.

Tab. 1: Results for Simple OLS Model and Multilevel Model

Dependent variable:

y

OLS linear
mixed-effects

(1) (2)

x1 0.200∗∗∗ 0.207∗∗∗

(0.003) (0.011)
x2 −0.050∗∗∗ −0.050∗∗∗

(0.0002) (0.0001)
z1 0.025∗∗∗ 0.003∗

(0.002) (0.001)
z2 −0.223∗∗∗ −0.181∗

(0.006) (0.099)
Constant 11.546∗∗∗ 11.455∗∗∗

(0.024) (0.304)

Observations 50,000 50,000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

While most of the estimates seem to be reasonably close to the scenario specification, it
should be noted that the coefficient for Z2 is highly significant even though it was specified
to actually have a null effect. It is very likely that this result arises due to the fact that
we did not account for autocorrelations in the series of Z2 or y, which potentially induced
spurious correlations between both variables. Furthermore, the estimated coefficient for Z1

appears to be much smaller than the true value, albeit still being significant.
How can the model be estimated with the arfimaMLM package? The basic structure of

the command can be described as follows:

arfimaMLM(formula, data, timevar

, d = "Hurst", arma = NULL

, ecmformula = NULL, decm = "Hurst"

, drop = 5, report.data = TRUE, ...)

The major input for the function is formula, which specifies the multilevel model to be
estimated after the necessary data transformations according to the Arfima-MLM framework
were implemented for the dataset specified in data. It can be specified similar to the model
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call in standard multilevel models estimated via lmer. The only difference is that the vari-
ables specified in formula do not have to be equal to the original variable names included
in the data frame. Rather, the user can add specific suffixes to each variable in order to
call specific data transformations in the arfimaMLM function. In the current version of the
package, three specific suffixes are possible: “.ydif”, “.xdif” and “.fd”.

If the suffix .ydif is added to the dependent variable (e.g. y.ydif instead of y), the
function will remove the daily deterministic component from the individual level variable
as specified in equation (2), such that it only consists of within-time point, as well as non-
temporally autocorrelated between-time point variation. If the suffix .xdif is added to an
independent variable (e.g. x1.xdif instead of x1), the variable is simply filtered through
the time point averages as specified in equation (3).

The suffix .fd allows the user to select variables which are supposed to be transformed
to a fractionally differenced level-variable (by aggregating individuals over each time point
prior to fractionally differencing the series, z1 in our example), or variables which are already
included as a level-variable in the original dataset and are just supposed to be fractionally
differenced before the multilevel model is estimated (z2 in our example). Since the suffixes
.ydif, .xdif, and .fd are interpreted by the function as calls for specific data transformation
procedures, none of the original variable names in data should include them in order to
prevent errors in the estimation procedure.

Consider the following examples for possible formula calls in the arfimaMLM package
(omitting the remaining arguments) for the dataset specified above:

arfimaMLM(y.ydif ~ x1.xdif + x2 + z1.fd + z2.fd

+ (1|time)

, data=data, timevar = "time", ...)

arfimaMLM(y.ydif ~ x1.xdif + x2 + z1.fd + z2.fd

+ (1+x1.xdif|time)

, data=data, timevar = "time", ...)

For the simulational scenario, we want to filter the variables y and x1. Accordingly, the
suffix .ydif is added to the name of the dependent variable, and the suffix .xdif is added
to the name of the independent variable in the data frame data. Furthermore, we want to
include the level effects of z1 and z2. In order to aggregate z1 and fractionally difference z1

and z2, we add the suffix .fd. The level variable for these transformations is specified by
including the respective variable name time as the argument for timevar. Furthermore, this
variable is also specified in formula as the variable according to which the observations are
nested in the multilevel model. In the second arfimaMLM, we additionally include a random
coefficient for x1.xdif.

We can also add an error correction mechanism to the model. Note that the ecm again
does not have to be part of the original dataset but rather is generated within the function.
The following two examples show how the error correction mechanism can be specified as
part of the arfimaMLM procedure.
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arfimaMLM(y.ydif ~ x1.xdif + x2 + z1.fd + z2.fd + ecm

+ (1|time)

, data=data, timevar = "time"

, ecmformula = y.mean ~ x1.mean, ...)

arfimaMLM(y.ydif ~ x1.xdif + x2 + z1.fd + z2.fd + ecm

+ (1+x1.xdif|time)

, data=data, timevar = "time"

, ecmformula = y.mean ~ x1.mean, ...)

ecmformula contains the specification of the co-integration regression to receive the resid-
uals for the error correction mechanism (ecm) included in formula according to a simple
linear regression model specification. Note that the variable names included here cannot be
the original variable names, but rather have to be supplemented by the suffix .mean, since
the ecm is based on the level/time aggregates at time t. Again, the mean is calculated based
on the level variable specified in timevar, namely time.

If formula contains ecm as one of the independent variables, and ecmformula is correctly
specified, the function will include the lag of the fractionally differenced residuals of the co-
integration regression as an error correction mechanism in the multilevel model. The ECM
does not have to be estimated prior to calling the function.

The remaining arguments entered in the function specify details about the data manip-
ulation. d calls for a specific estimation method for the fractional differencing parameter in
the fracdiff-package or the fractal-package ("Hurst", "ML", "GPH", or "Sperio"). The
default is "Hurst". If the user wants to specify the methods for each variable individually, d
can be a list containing a call for every individual variable. Furthermore, the list can contain
numeric values for differencing parameters which were estimated externally (see example).
A variable will not be differenced if d is specified as 0. Accordingly, decm calls for a spe-
cific estimation method for the fractional differencing parameter. Again, it can be either
"Hurst", "ML", "GPH", or "Sperio" and the default is "Hurst". Again, the argument can
also be a numeric value indicating the differencing parameter estimated externally.

It is also possible to estimate AR and MA parameters for the (fractionally differenced)
level variables in order to remove remaining autocorrelation. arma contains a list of variables
for which AR and MA parameters are to be estimated (after fractional differencing) as well as
a vector containing the respective orders of the model to fit. order[1] corresponds to the AR
part and order[2] to the MA part, similar to the model specification in arima (just excluding
the d parameter here). For variables specified in arma, the function will use the residuals
of the ARMA model (which is estimated for the fractionally differenced level variables,
respectively) for the subsequent model estimation in order to remove their deterministic
components. This procedure is only available for variables which were augmented by the
suffix .fd or .ydif in formula. It is also possible to fix certain AR or MA parameters at
zero instead of estimating all parameters up to the order described in arma. For example, one
might want to estimate AR(1) and AR(3) parameters, but not include AR(2) for a specific
variable in the model.

Consider the following examples for different model specifications taking into account
the estimation method for the fractional differencing parameter as well as the estimation of
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respective ARMA models.

arfimaMLM(y.ydif ~ x1.xdif + x2 + z1.fd + z2.fd + ecm

+ (1|time)

, data=data, timevar = "time"

, ecmformula = y.mean ~ x1.mean

, d="Sperio"

, decm="ML", ...)

arfimaMLM(y.ydif ~ x1.xdif + x2 + z1.fd + z2.fd + ecm

+ (1+x1.xdif|time)

, data=data, timevar = "time"

, ecmformula = y.mean ~ x1.mean

, d=list(y="Hurst", z1="Sperio", z2=0.25)

, decm="GPH", ...)

arfimaMLM(y.ydif ~ x1.xdif + x2 + z1.fd + z2.fd + ecm

+ (1+x1.xdif|time)

, data=data, timevar = "time"

, ecmformula = y.mean ~ x1.mean

, arma = list(y = c(1,0), z2 = c(0,2)), ...)

arfimaMLM(y.ydif ~ x1.xdif + x2 + z1.fd + z2.fd + ecm

+ (1+x1.xdif|time)

, data=data, timevar = "time"

, ecmformula = y.mean ~ x1.mean

, arma = list(y = list(1,c(1,3))

, z2 = c(0,1)))

The first example calls the estimation method Sperio for all respective variables in-
cluded in formula, and ML for fractionally differencing the error correction mechanism. In
the second example, d contains a list specifying the estimation method for each variable in-
dividually. Accordingly, y is estimated via Hurst, and z1 via Sperio. For z2, the fractional
differencing parameter was externally set to 0.25. The fractional integration parameter for
the error correction mechanism is estimated via GPH. While it is unlikely that such a detailed
specification of estimation mechanisms is necessary (or useful), this example was merely
supposed to demonstrate the flexibility of the function. In the third example, the estimation
of the d parameters for all respective variables in formula and ecm is kept at the default
(Hurst). However, additionally to fractional differencing, the function also estimates an
AR(1) model for y and a MA(2) model for z2. Note that the MA(2) model will provide
estimates for both, MA(1) and MA(2). The multilevel model estimated subsequently would
include the residuals of the AR/MA model estimated after fractionally differencing the re-
spective variables. The last example presents a more complex ARMA model specification
for y than in the previous example. The only difference is, that the argument indicating the
order of the ARMA model for y is a list (list(1,c(1,3))) instead of a vector (c(1,0)).
This implies that the ARMA model does not include all parameters up to the highest order
specified (as in the previous example), but rather only include the AR and MA parameters
that are explicitly listed. Again, the first element corresponds to the AR part, while the
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second element corresponds to the MA part of the model. Accordingly, arma = list(y =

list(1,c(1,3))) will estimate AR(1), MA(1) and MA(3) parameters for y, while arma =

list(y = c(1,3)) would yield estimates for AR(1), MA(1), MA(2), as well as MA(3).
The last two arguments that can be specified are drop, which determines the number of

initial time points to be dropped from the analysis (default is 5), as well as report.data,
which determines whether the model output should include the transformed dataset used
for the analysis (default is TRUE). Furthermore, additional arguments can be passed to the
estimation procedures used within the function (e.g. for lmer).

After describing the details about the model specification, we will now turn to a brief
discussion of the function’s output. In general, the function returns a list of the S3 class
‘arfimaMLM’ with the following items:

• result: Output of the multilevel model as specified in formula.

• ecm: Output of the co-integration regression (returned if ecmformula is specified). The
lagged residuals of the co-integration regression are included in the multilevel model if
ecm is included in formula.

• d: Matrix of fractional differencing parameters estimated for the level variables (.ydif
and .fd) as well as the estimation method for each variable. Returns the specified
value for d if it was specified in the initial call of the function.

• arma: List of arima results for each variable specified in the model call. Contains
AR/MA estimates as well as the model residuals.

• data.mean: Data frame of variable means declared in formula as .ydif, .xdif or .fd
for each time point specified by the level variable in formula.

• data.fd: Data frame of fractionally differenced level variables declared in formula as
.ydif or .fd for each time point specified by the level variable in formula.

• data.merged: Merged data frame used when estimating the multilevel model consisting
of the original data as well as data.mean and data.fd

Note that data.mean, data.fd, and data.merged are only included if report.data is
set at its default (i.e. TRUE). Consider the following example for the simulational scenario
specified in this paper:

m1 <- arfimaMLM(y.ydif ~ x1.xdif + x2 + z1.fd + z2.fd

+ ecm + (1+x1.xdif|time)

, data = data, timevar = "time"

, ecmformula = y.mean ~ x1.mean

, d = "Hurst"

, decm = "GPH")

Calling the summary of this model will provide a brief R-Output that summarizes the
most important results:
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summary(m1)

###################################

Summary Error Correction Mechanism:

Call:

lm(formula = ecmformula, data = data.mean)

Residuals:

Min 1Q Median 3Q Max

-3.2427 -0.7130 0.0182 0.7618 2.6427

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.1164 0.5400 20.584 <2e-16 ***

x1.mean 0.1630 0.1194 1.364 0.176

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.13 on 98 degrees of freedom

Multiple R-squared: 0.01864,Adjusted R-squared: 0.008626

F-statistic: 1.861 on 1 and 98 DF, p-value: 0.1756

###################################

Fractional Differencing Parameters:

Method Estimate

y Hurst 0.41713434

z1 Hurst 0.01679005

z2 Hurst 0.10887414

ecm GPH 0.55248930

#########################

Summary Multilevel Model:

Linear mixed model fit by REML ['lmerMod']

Formula: y.ydif ~ x1.xdif + x2 + z1.fd + z2.fd + ecm + (1 + x1.xdif |

time)

Data: new$data.merged

REML criterion at convergence: 136183.4

Scaled residuals:

12



ArfimaMLM Documentation

Min 1Q Median 3Q Max

-4.2365 -0.6678 0.0050 0.6697 4.0721

Random effects:

Groups Name Variance Std.Dev. Corr

time (Intercept) 1.11753 1.057

x1.xdif 0.01167 0.108 0.47

Residual 1.01005 1.005

Number of obs: 47500, groups: time, 95

Fixed effects:

Estimate Std. Error t value

(Intercept) 0.0600844 0.1087158 0.6

x1.xdif 0.2035655 0.0113217 18.0

x2 -0.0499160 0.0001156 -431.7

z1.fd 0.2360076 0.1037031 2.3

z2.fd -0.0468624 0.0943287 -0.5

ecm -0.1497914 0.0873453 -1.7

Correlation of Fixed Effects:

(Intr) x1.xdf x2 z1.fd z2.fd

x1.xdif 0.455

x2 0.000 0.000

z1.fd 0.030 0.000 0.000

z2.fd -0.036 0.000 -0.001 0.005

ecm -0.030 0.000 0.000 -0.021 0.077

Looking at the coefficients estimated in the multilevel model of the arfimaMLM function,
it can be seen that the coefficients are closer to the values specified in the simulational sce-
nario as compared to the estimates reported for the simple OLS model (see Table 1). More
specifically, the estimate for z1 is closer to its true value. More importantly, taking into
account the time-series structure of the level-variables eliminates the significant effect of z2.
While this evidence by itself is obviously not sufficient to show that the ArfimaMLM proce-
dure yields more consistent estimates in general, it certainly provides additional evidence in
favor of the findings presented by Lebo and Weber (2015).

We can also extract specific items from the arfimaMLM-list. Let’s assume we were only
interested in the result of the multilevel model. Furthermore, we would like to take a look
at the head of the fractionally differenced data as well as the data containing the generated
means for each time point. We would also like to save the merged data frame used for the
analysis for future use. All of that can be implemented by executing the following code:

summary(m1$result)

Linear mixed model fit by REML ['lmerMod']

Formula: y.ydif ~ x1.xdif + x2 + z1.fd + z2.fd + ecm + (1 + x1.xdif |
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time)

Data: new$data.merged

REML criterion at convergence: 136183.4

Scaled residuals:

Min 1Q Median 3Q Max

-4.2365 -0.6678 0.0050 0.6697 4.0721

Random effects:

Groups Name Variance Std.Dev. Corr

time (Intercept) 1.11753 1.057

x1.xdif 0.01167 0.108 0.47

Residual 1.01005 1.005

Number of obs: 47500, groups: time, 95

Fixed effects:

Estimate Std. Error t value

(Intercept) 0.0600844 0.1087158 0.6

x1.xdif 0.2035655 0.0113217 18.0

x2 -0.0499160 0.0001156 -431.7

z1.fd 0.2360076 0.1037031 2.3

z2.fd -0.0468624 0.0943287 -0.5

ecm -0.1497914 0.0873453 -1.7

Correlation of Fixed Effects:

(Intr) x1.xdf x2 z1.fd z2.fd

x1.xdif 0.455

x2 0.000 0.000

z1.fd 0.030 0.000 0.000

z2.fd -0.036 0.000 -0.001 0.005

ecm -0.030 0.000 0.000 -0.021 0.077

head(m1$data.fd)

time y.fd z1.fd z2.fd ecm

1 1 -0.4980316 1.9757137 -0.65226663 NA

2 2 0.4986830 1.3185836 -0.83418872 -0.4669326

3 3 0.7585310 -0.1471850 -1.10178838 0.4668722

4 4 -0.1486040 0.3205121 -1.30089067 0.7160995

5 5 -0.2049091 -0.2496606 -0.75823137 -0.2124583

6 6 0.3718751 -0.5550096 0.05193581 -0.1185358

head(m1$data.mean)
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time y.mean x1.mean z1.mean z2.mean

1 1 11.33888 4.230249 4.154311 2.222936

2 2 12.12785 4.924501 3.530353 1.969999

3 3 12.65626 4.700633 2.070416 1.643219

4 4 12.03351 4.320279 2.519231 1.376323

5 5 11.81165 3.712363 1.949179 1.851921

6 6 12.27197 4.375128 1.633863 2.674118

newdata <- m1$data.merged

The same model can also be estimated using arfimaOLS. All arguments with regard
to the data manipulations and model specification are equivalent to arfimaMLM. The only
difference is that arfimaOLS ultimately estimates a simple linear regression model rather than
a multilevel model. Consider the following specification of the same model using arfimaOLS:

m2 <- arfimaOLS(y.ydif ~ x1.xdif + x2 + z1.fd + z2.fd

+ ecm

, data = data, timevar = "time"

, ecmformula = y.mean ~ x1.mean

, d = "Hurst"

, decm = "GPH")

The only difference in the function call for arfimaOLS is the fact that formula does not
include the specification for clustering. All other arguments, function calls, as well as the
structure of the output is equivalent to the description outlined above.2 Again, calling the
summary of this model will provide a brief R-Output that summarizes the most important
results:

summary(m2)

###################################

Summary Error Correction Mechanism:

Call:

lm(formula = ecmformula, data = data.mean)

Residuals:

Min 1Q Median 3Q Max

-3.2427 -0.7130 0.0182 0.7618 2.6427

Coefficients:

Estimate Std. Error t value Pr(>|t|)

2 It should be noted that the S3 class of this model output is arfimaOLS and not arfimaMLM. However,
both classes are essentially equivalent with regard to their structure and behavior.

15



ArfimaMLM Documentation

(Intercept) 11.1164 0.5400 20.584 <2e-16 ***

x1.mean 0.1630 0.1194 1.364 0.176

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.13 on 98 degrees of freedom

Multiple R-squared: 0.01864,Adjusted R-squared: 0.008626

F-statistic: 1.861 on 1 and 98 DF, p-value: 0.1756

###################################

Fractional Differencing Parameters:

Method Estimate

y Hurst 0.41713434

z1 Hurst 0.01679005

z2 Hurst 0.10887414

ecm GPH 0.55248930

##################

Summary OLS Model:

Call:

lm(formula = formula, data = new$data.merged)

Residuals:

Min 1Q Median 3Q Max

-6.0890 -0.9588 0.0402 1.0017 5.7285

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0613607 0.0067106 9.144 <2e-16 ***

x1.xdif 0.2033355 0.0033485 60.724 <2e-16 ***

x2 -0.0499045 0.0001677 -297.662 <2e-16 ***

z1.fd 0.2076489 0.0071888 28.885 <2e-16 ***

z2.fd -0.0846972 0.0065389 -12.953 <2e-16 ***

ecm -0.1696242 0.0060560 -28.009 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.46 on 47494 degrees of freedom

Multiple R-squared: 0.6641,Adjusted R-squared: 0.664

F-statistic: 1.878e+04 on 5 and 47494 DF, p-value: < 2.2e-16
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Again, the estimate for z1 appears to be closer to its true value as compared to the
original OLS results. However, since we did not properly take into account the multilevel
structure as in arfimaMLM, the coefficient for z2 still remains significant (albeit being closer
to zero than the coefficient reported in Table 1).
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